Application Logic Service Program

The Application Logic Service Program (ALSP) works in concert with the UI. The UI handles all screen I/O, but has no knowledge of the underlying database. (Almost) anything involving knowledge of data base (file I/O, record edits, etc.) is handled by the ALSP. The ALSP contains two types of procedures:

1. Public – Used by the UI

2. Private – Used internally, not accessible to the UI.

The reason there are two levels of procedure was so as to hide all details of file I/O; a subordinate service program dealing purely with file I/O would have been an equally reasonable approach. The fact that file I/O details are not visible to the UI means that we can replace all the opnqryfs with embedded SQL, and do so in such a manner that it is transparent to the UI.

Public Procedures
sar515Init – This procedure should be called prior to calling any other procedures. It creates the necessary User Spaces/User Indexes, as well as initializing variables.

rtvBuffer – This procedure will be the second procedure called. Its only parameter is a pointer to the input buffer. The input buffer is an externally described data structure, with the data base file serving as the external description. All programs utilizing the ALSP will similarly declare a pointer based data structure. This means that the input buffer is coincident in memory for all programs using the ALSP, and does not have to be explicitly passed as a parameter.

edt – This procedure edits the input buffer. It has one input parameter, with values of {Add;Chg;Cpy;Del}. It edits the input buffer, and returns an error code. If any errors are found, the appropriate messages are written to the COM0000 Error Queue, using the procedure putmsg.

upd – This procedure, after editing the input buffer, updates the data base according to the value of the input parameter {Add;Chg;Cpy;Del}

Load Page Procedures – These procedures all load the User Space with (up to) one page of records. The UI can then retrieve the records from the User Space one record at a time. There are two parameters;

1. pagsiz – The size of the subfile page (number of records requested)

2. reccnt – The number of records actually loaded into the User Space

pagfwdbeg – Load the User Space starting with the beginning of file.

pagfwdkgt – Load the User Space, beginning with the record after the record in the input buffer.

pagfwdkge – Load the User Space, beginning with the record equal to or following the record in the input buffer.

pagbak – Load the User Space (from the end) beginning with the record prior to the record in the input buffer

pagbakend – Load the User Space (from the end) beginning with the last record

Related procedures:

clrrec – Clear user space (no parameters)

getrec – One input parameter (long), relative record number to be moved from the User Space to the input buffer.

Selection Option Handling – Selection option handling has been vastly enhanced with the implementation of the ALSP. A file may contain more records than a sub-file may contain (9999). If somebody paged down through 10000 records, selecting every one, an option would have to be lost. Similar issues arise when F13 (repeat) is performed upon a file containing more than the maximum records. Therefore, the sub-file is not used to store selection options; they are stored in a User Index. User Indexes are fast and powerful, but they have one limitation regarding our need to store selection options. They can only have one key (contiguous, ascending,beginning with the first character). The UI, however, supports multiple (ascending and descending) keys. Therefore it is necessary to use Data Structures and collate sequences (fields that are associated with a descending key must be reverse collated prior to insertion in the data structure). The data structure used when AA3_ALERT (ALSP SAR0515) looks like this:

DQF6DS DS

 D QF6BLANK Like(blank) Inz(' ')

 D QF6_ALERT Like(AA3_ALERT)

 D QF6_CMD Like(AA3_CMD)

 D QF6_CMD_L Like(AA3_CMD_L)

 D QF6_CPP Like(AA3_CPP)

 D QF6_CPP_L Like(AA3_CPP_L)

 D QF6_AUDIT Like(AA3_AUDIT)

 D QF6_CMD_D Like(AA3_CMD_D)

 D QF6OPT Like(option)

If AA3_ALERT was a descending key field, it would be reverse collated prior to being moved into QF6_ALERT.

 When (openfile = QF6D)

 fromDS:toDS XLate AA3_CMD QF6_CMD

 fromDS:toDS XLate AA3_CMD_L QF6_CMD_L

 fromDS:toDS XLate AA3_CPP QF6_CPP

 fromDS:toDS XLate AA3_CPP_L QF6_CPP_L

 fromDS:toDS XLate AA3_CMD_D QF6_CMD_D

 fromDS:toDS XLate AA3_AUDIT QF6_AUDIT

 fromDS:toDS XLate AA3_ALERT QF6_ALERT

 Eval QFxDS = QF6DS

fromDS is a 256 char constant, containing the hex characters x’00’ through x’FF’ in sequence. toDS is a 256 char constant containing the hex characters x’FF’ through x’00’ in descending sequence.

clropt – This procedure has no input parameter. It clears the User Index.

putopt – This procedure has one input parameter, a two character selection option. It inserts the selection option, with appropriate key information, into the User Index

repeatopt – This procedure has one input parameter, a two character selection option. It inserts the selection option, with appropriate key information, for all records greater than the record in the input buffer.

getoptbeg – This procedure has one output parameter, a two character selection option. The first selection option in the User index is returned, and the input buffer loaded with the appropriate key information.

getoptkeq – This procedure has one output parameter, a two character selection option. If a selection option matching the input buffer is found, it is returned.

getoptkgt – This procedure has one output parameter, a two character selection option. The first user index entry with a key greater than that in the input buffer (if any) is returned.

Miscellaneous Public Procedures
setseq – This procedure has one input parameter, a ten character field name. If currently sequenced by specified field then sequence is inverted (from ascending to descending and vice versa), otherwise the sequence is set to that field.

setODP – Closes and reopens file. Called when sequence changes, or any of the filter fields.

setDflt – clear input buffer, and load with defaults

Private Procedures

io – This procedure emulates all RPG file i/o opcodes (SETLL, READE, etc.). When the ALSP is converted to use SQL, this procedure will be replaced (or entirely rewritten).

openview – This procedure constructs the opnqryf statement, and executes it. It will be replaced (createCursor?) when the ALSP is converted to use SQL.

loadds,unloadds – These procedures move the input buffer into/out of the selection option user index data structure, performing any necessary reverse collations.

